refactor: split project into multiple crates

This commit is contained in:
Romain Paquet 2025-11-05 20:23:17 +01:00
parent 486af67fc2
commit 857f747524
27 changed files with 308 additions and 222 deletions

11
lila-checking/Cargo.toml Normal file
View file

@ -0,0 +1,11 @@
[package]
name = "lila-checking"
version = "0.0.1"
edition = "2021"
[dependencies]
lila-ast = { path = "../lila-ast" }
[dev-dependencies]
lila-parsing = { path = "../lila-parsing" }
pretty_assertions = "1.4.0"

395
lila-checking/src/lib.rs Normal file
View file

@ -0,0 +1,395 @@
use std::collections::HashMap;
use lila_ast::typing::error::{BinOpAndSpan, TypeAndSpan, TypeError, TypeErrorKind};
use lila_ast::typing::{Signature, Type};
use lila_ast::*;
#[cfg(test)]
mod tests;
#[derive(Debug, PartialEq)]
pub struct CheckedModule(pub Module);
pub trait TypeCheckModule {
fn type_check(&mut self) -> Result<(), Vec<TypeError>>;
}
impl TypeCheckModule for Module {
fn type_check(&mut self) -> Result<(), Vec<TypeError>> {
let mut ctx = TypingContext::new(self.path.clone());
ctx.file.clone_from(&self.file);
// Register all function signatures
for func in &self.functions {
if let Some(_previous) = ctx.functions.insert(func.name.clone(), func.signature()) {
todo!("handle redefinition of function or identical function names across different files");
}
}
// TODO: add signatures of imported functions (even if they have not been checked)
let mut errors = Vec::new();
// Type-check the function bodies and complete all type placeholders
for func in &mut self.functions {
if let Err(e) = func.typ(&mut ctx) {
errors.push(e);
};
ctx.variables.clear();
}
if errors.is_empty() {
Ok(())
} else {
Err(errors)
}
}
}
pub struct TypingContext {
pub file: Option<std::path::PathBuf>,
pub module: ModulePath,
pub function: Option<Identifier>,
pub functions: HashMap<Identifier, Signature>,
pub variables: HashMap<Identifier, Type>,
}
impl TypingContext {
pub fn new(path: ModulePath) -> Self {
let builtin_functions = HashMap::from([(
String::from("println"),
Signature(vec![Type::Str], Type::Unit),
)]);
Self {
file: None,
module: path,
function: None,
functions: builtin_functions,
variables: Default::default(),
}
}
pub fn make_error(&self, kind: TypeErrorKind) -> TypeError {
TypeError {
kind,
file: self.file.clone(),
module: self.module.clone(),
function: self.function.clone(),
}
}
}
/// Trait for nodes which have a deducible type.
pub trait TypeCheck {
/// Try to resolve the type of the node and complete its type placeholders.
fn typ(&mut self, ctx: &mut TypingContext) -> Result<Type, TypeError>;
}
impl TypeCheck for FunctionDefinition {
fn typ(&mut self, ctx: &mut TypingContext) -> Result<Type, TypeError> {
ctx.function = Some(self.name.clone());
for param in &self.parameters {
// XXX: Parameter types should be checked
// when they are not builtin
ctx.variables.insert(param.name.clone(), param.typ.clone());
}
let body_type = self.body.typ(ctx)?;
// Check coherence with the body's type.
if *self.return_type.as_ref().unwrap_or(&Type::Unit) != body_type {
return Err(
ctx.make_error(TypeErrorKind::BlockTypeDoesNotMatchFunctionType {
block_type: body_type.clone(),
}),
);
}
Ok(self.return_type.clone().unwrap_or(Type::Unit))
}
}
impl TypeCheck for Block {
fn typ(&mut self, ctx: &mut TypingContext) -> Result<Type, TypeError> {
// Check declarations and assignments.
for statement in &mut self.statements {
match statement {
Statement::DeclareStatement {
lhs: ident,
rhs: expr,
..
} => {
let typ = expr.typ(ctx)?;
if let Some(_typ) = ctx.variables.insert(ident.clone(), typ.clone()) {
// TODO: Shadowing? (illegal for now)
return Err(ctx.make_error(TypeErrorKind::VariableRedeclaration));
}
}
Statement::AssignStatement {
lhs: ident,
rhs: expr,
..
} => {
let rhs_typ = expr.typ(ctx)?;
let Some(lhs_typ) = ctx.variables.get(ident) else {
return Err(ctx.make_error(TypeErrorKind::AssignUndeclared));
};
// Ensure same type on both sides.
if rhs_typ != *lhs_typ {
return Err(ctx.make_error(TypeErrorKind::AssignmentMismatch {
lht: lhs_typ.clone(),
rht: rhs_typ.clone(),
}));
}
}
Statement::ReturnStatement(return_stmt) => {
return_stmt.typ(ctx)?;
}
Statement::CallStatement { call, span: _ } => {
call.typ(ctx)?;
}
Statement::UseStatement { .. } => {
// TODO: import the signatures (and types)
todo!()
}
Statement::IfStatement {
condition: cond,
then_block: block,
..
} => {
if cond.typ(ctx)? != Type::Bool {
return Err(ctx.make_error(TypeErrorKind::ConditionIsNotBool));
}
block.typ(ctx)?;
}
Statement::WhileStatement {
condition: cond,
loop_block: block,
span: _,
} => {
if cond.typ(ctx)? != Type::Bool {
return Err(ctx.make_error(TypeErrorKind::ConditionIsNotBool));
}
block.typ(ctx)?;
}
}
}
// Check if there is an expression at the end of the block.
if let Some(expr) = &mut self.value {
self.typ = expr.typ(ctx)?.clone();
Ok(self.typ.clone())
} else {
self.typ = Type::Unit;
Ok(Type::Unit)
}
}
}
impl TypeCheck for Call {
fn typ(&mut self, ctx: &mut TypingContext) -> Result<Type, TypeError> {
match &mut self.callee.expr {
Expr::Identifier { name, typ, .. } => {
let signature = match ctx.functions.get(name) {
Some(sgn) => sgn.clone(),
None => {
return Err(
ctx.make_error(TypeErrorKind::UnknownFunctionCalled(name.clone()))
)
}
};
*typ = signature.clone().into();
let Signature(params_types, func_type) = signature;
self.typ = func_type.clone();
// Collect arg types.
let mut args_types: Vec<Type> = vec![];
for arg in &mut self.args {
let arg_typ = arg.typ(ctx)?;
args_types.push(arg_typ.clone());
}
if args_types == *params_types {
Ok(self.typ.clone())
} else {
Err(ctx.make_error(TypeErrorKind::WrongFunctionArguments))
}
}
_ => unimplemented!("cannot call on expression other than identifier"),
}
}
}
impl TypeCheck for Expr {
fn typ(&mut self, ctx: &mut TypingContext) -> Result<Type, TypeError> {
match self {
Expr::Identifier { name, typ, .. } => {
if let Some(ty) = ctx.variables.get(name) {
*typ = ty.clone();
Ok(typ.clone())
} else {
Err(ctx.make_error(TypeErrorKind::UnknownIdentifier {
identifier: name.clone(),
}))
}
}
Expr::BooleanLiteral(..) => Ok(Type::Bool),
Expr::IntegerLiteral(..) => Ok(Type::Int),
Expr::FloatLiteral(..) => Ok(Type::Float),
Expr::UnaryExpression { op, inner, .. } => {
let inner_type = &inner.typ(ctx)?;
match (&op, inner_type) {
(UnaryOperator::Not, Type::Bool) => Ok(Type::Bool),
_ => Err(ctx.make_error(TypeErrorKind::InvalidUnaryOperator {
operator: *op,
inner: inner_type.clone(),
})),
}
}
Expr::BinaryExpression(BinaryExpression {
lhs,
op,
rhs,
typ,
op_span,
}) => {
let operator = BinOpAndSpan {
op: op.clone(),
span: *op_span,
};
let ty = match op {
BinaryOperator::Add
| BinaryOperator::Sub
| BinaryOperator::Mul
| BinaryOperator::Div
| BinaryOperator::And
| BinaryOperator::Or => {
let left_type = &lhs.typ(ctx)?;
let right_type = &rhs.typ(ctx)?;
match (left_type, right_type) {
(Type::Int, Type::Int) => Ok(Type::Int),
(Type::Float, Type::Float) => Ok(Type::Float),
(Type::Bool, Type::Bool) => Ok(Type::Bool),
(_, _) => Err(ctx.make_error(TypeErrorKind::InvalidBinaryOperator {
operator,
lhs: TypeAndSpan {
ty: left_type.clone(),
span: lhs.span,
},
rhs: TypeAndSpan {
ty: right_type.clone(),
span: rhs.span,
},
})),
}
}
BinaryOperator::Equal | BinaryOperator::NotEqual => {
let lhs_type = lhs.typ(ctx)?;
let rhs_type = rhs.typ(ctx)?;
if lhs_type != rhs_type {
return Err(ctx.make_error(TypeErrorKind::InvalidBinaryOperator {
operator,
lhs: TypeAndSpan {
ty: lhs_type.clone(),
span: lhs.span,
},
rhs: TypeAndSpan {
ty: rhs_type.clone(),
span: rhs.span,
},
}));
}
Ok(Type::Bool)
}
BinaryOperator::Modulo => {
let lhs_type = lhs.typ(ctx)?;
let rhs_type = lhs.typ(ctx)?;
match (&lhs_type, &rhs_type) {
(Type::Int, Type::Int) => Ok(Type::Int),
_ => Err(ctx.make_error(TypeErrorKind::InvalidBinaryOperator {
operator,
lhs: TypeAndSpan {
ty: lhs_type.clone(),
span: lhs.span,
},
rhs: TypeAndSpan {
ty: rhs_type.clone(),
span: rhs.span,
},
})),
}
}
};
*typ = ty?;
Ok(typ.clone())
}
Expr::StringLiteral(_) => Ok(Type::Str),
Expr::UnitLiteral => Ok(Type::Unit),
Expr::Call(call) => call.typ(ctx),
Expr::Block(block) => block.typ(ctx),
Expr::IfExpr {
cond,
then_body,
else_body,
typ,
} => {
if cond.typ(ctx)? != Type::Bool {
Err(ctx.make_error(TypeErrorKind::ConditionIsNotBool))
} else {
let then_body_type = then_body.typ(ctx)?;
let else_type = else_body.typ(ctx)?;
if then_body_type != else_type {
Err(ctx.make_error(TypeErrorKind::IfElseMismatch))
} else {
// XXX: opt: return ref to avoid cloning
*typ = then_body_type.clone();
Ok(then_body_type)
}
}
}
}
}
}
impl TypeCheck for ReturnStatement {
fn typ(&mut self, ctx: &mut TypingContext) -> Result<Type, TypeError> {
let ty = if let Some(expr) = &mut self.expr {
expr.typ(ctx)?
} else {
Type::Unit
};
// Check if the returned type is coherent with the function's signature
let func_type = &ctx.functions.get(ctx.function.as_ref().unwrap()).unwrap().1;
if ty != *func_type {
return Err(
ctx.make_error(TypeErrorKind::ReturnTypeDoesNotMatchFunctionType {
return_expr: self.expr.as_ref().map(|e| TypeAndSpan {
ty: ty.clone(),
span: e.span,
}),
return_stmt: TypeAndSpan {
ty: ty.clone(),
span: self.span,
},
}),
);
};
Ok(ty)
}
}
impl TypeCheck for SExpr {
#[inline]
fn typ(&mut self, ctx: &mut TypingContext) -> Result<Type, TypeError> {
self.expr.typ(ctx)
}
}

View file

@ -0,0 +1,36 @@
use crate::TypeCheckModule;
use lila_ast::typing::{error::*, Type};
use lila_ast::ModulePath;
use lila_parsing::{DefaultParser, Parser};
use pretty_assertions::assert_eq;
#[test]
fn addition_int_and_float() {
let source = "fn add(a: int, b: float) int { a + b }";
let mut ast = DefaultParser::default()
.parse_as_module(source, ModulePath::default(), 0)
.unwrap();
let res = ast.type_check();
assert!(res.is_err_and(|errors| errors.len() == 1
&& matches!(errors[0].kind, TypeErrorKind::InvalidBinaryOperator { .. })));
}
#[test]
fn return_int_instead_of_float() {
let source = "fn add(a: int, b: int) float { a + b }";
let mut ast = DefaultParser::default()
.parse_as_module(source, ModulePath::default(), 0)
.unwrap();
let res = ast.type_check();
assert_eq!(
res,
Err(vec![TypeError {
file: None,
module: ModulePath::default(),
function: Some("add".to_string()),
kind: TypeErrorKind::BlockTypeDoesNotMatchFunctionType {
block_type: Type::Int,
}
}])
);
}