lila/src/typing/mod.rs
2024-03-08 17:38:23 +01:00

446 lines
16 KiB
Rust

use std::collections::HashMap;
use std::fmt::Display;
use crate::ast::ModulePath;
use crate::ast::*;
mod error;
use crate::typing::error::{TypeError, TypeErrorKind};
#[derive(Debug, PartialEq, Clone)]
pub enum Type {
/// Not a real type, used for parsing pass
Undefined,
Bool,
Int,
Float,
Unit,
Str,
Function {
params: Vec<Type>,
returns: Box<Type>,
},
Custom(Identifier),
}
impl Display for Type {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Type::Undefined => f.write_str("UNDEFINED"),
Type::Bool => f.write_str("Bool"),
Type::Int => f.write_str("Int"),
Type::Float => f.write_str("Float"),
Type::Unit => f.write_str("Unit"),
Type::Str => f.write_str("Str"),
Type::Custom(identifier) => f.write_str(identifier),
Type::Function { params, returns } => {
f.write_str("Fn(")?;
for param in params {
f.write_fmt(format_args!("{}, ", param))?;
}
f.write_str(") -> ")?;
f.write_fmt(format_args!("{}", returns))
}
}
}
}
impl From<&str> for Type {
fn from(value: &str) -> Self {
match value {
"int" => Type::Int,
"float" => Type::Float,
"bool" => Type::Bool,
_ => Type::Custom(Identifier::from(value)),
}
}
}
#[derive(Debug, PartialEq, Clone)]
pub struct Signature(Vec<Type>, Type);
impl Into<Type> for Signature {
fn into(self) -> Type {
Type::Function {
params: self.0,
returns: Box::new(self.1),
}
}
}
impl FunctionDefinition {
fn signature(&self) -> Signature {
let return_type = self.return_type.clone().unwrap_or(Type::Unit);
let params_types = self.parameters.iter().map(|p| p.typ.clone()).collect();
Signature(params_types, return_type)
}
}
impl Module {
pub fn type_check(&mut self) -> Result<(), TypeError> {
let mut ctx = TypingContext::new(self.path.clone());
ctx.file = self.file.clone();
// Register all function signatures
for func in &self.functions {
if let Some(_previous) = ctx.functions.insert(func.name.clone(), func.signature()) {
todo!("handle redefinition of function or identical function names across different files");
}
}
// TODO: add signatures of imported functions (even if they have not been checked)
// Type-check the function bodies and complete all type placeholders
for func in &mut self.functions {
func.typ(&mut ctx)?;
ctx.variables.clear();
}
Ok(())
}
}
pub struct TypingContext {
pub file: Option<std::path::PathBuf>,
pub module: ModulePath,
pub function: Option<Identifier>,
pub functions: HashMap<Identifier, Signature>,
pub variables: HashMap<Identifier, Type>,
}
impl TypingContext {
pub fn new(path: ModulePath) -> Self {
let builtin_functions = HashMap::from([(
String::from("println"),
Signature(vec![Type::Str], Type::Unit),
)]);
Self {
file: None,
module: path,
function: None,
functions: builtin_functions,
variables: Default::default(),
}
}
}
/// Trait for nodes which have a deducible type.
pub trait TypeCheck {
/// Try to resolve the type of the node and complete its type placeholders.
fn typ(&mut self, ctx: &mut TypingContext) -> Result<Type, TypeError>;
}
impl TypeCheck for FunctionDefinition {
fn typ(&mut self, ctx: &mut TypingContext) -> Result<Type, TypeError> {
ctx.function = Some(self.name.clone());
for param in &self.parameters {
// XXX: Parameter types should be checked
// when they are not builtin
ctx.variables.insert(param.name.clone(), param.typ.clone());
}
let body_type = self.body.typ(ctx)?;
// If the return type is not specified, it is unit.
if self.return_type.is_none() {
self.return_type = Some(Type::Unit)
}
// Check coherence with the body's type.
if *self.return_type.as_ref().unwrap() != body_type {
return Err(TypeError::builder()
.context(ctx)
.kind(TypeErrorKind::BlockTypeDoesNotMatchFunctionType {
block_type: body_type.clone(),
function_type: self.return_type.as_ref().unwrap().clone(),
})
.build());
}
// Check coherence with return statements.
for statement in &mut self.body.statements {
if let Statement::ReturnStatement(value) = statement {
let ret_type = match value {
Some(expr) => expr.typ(ctx)?,
None => Type::Unit,
};
if ret_type != *self.return_type.as_ref().unwrap() {
return Err(TypeError::builder()
.context(ctx)
.kind(TypeErrorKind::ReturnTypeDoesNotMatchFunctionType {
function_type: self.return_type.as_ref().unwrap().clone(),
return_type: ret_type.clone(),
})
.build());
}
}
}
Ok(self.return_type.clone().unwrap())
}
}
impl TypeCheck for Block {
fn typ(&mut self, ctx: &mut TypingContext) -> Result<Type, TypeError> {
let mut return_typ: Option<Type> = None;
// Check declarations and assignments.
for statement in &mut self.statements {
match statement {
Statement::DeclareStatement(ident, expr) => {
let typ = expr.typ(ctx)?;
if let Some(_typ) = ctx.variables.insert(ident.clone(), typ.clone()) {
// TODO: Shadowing? (illegal for now)
return Err(TypeError::builder()
.context(ctx)
.kind(TypeErrorKind::VariableRedeclaration)
.build());
}
}
Statement::AssignStatement(ident, expr) => {
let rhs_typ = expr.typ(ctx)?;
let Some(lhs_typ) = ctx.variables.get(ident) else {
return Err(TypeError::builder()
.context(ctx)
.kind(TypeErrorKind::AssignUndeclared)
.build());
};
// Ensure same type on both sides.
if rhs_typ != *lhs_typ {
return Err(TypeError::builder()
.context(ctx)
.kind(TypeErrorKind::AssignmentMismatch {
lht: lhs_typ.clone(),
rht: rhs_typ.clone(),
})
.build());
}
}
Statement::ReturnStatement(maybe_expr) => {
let expr_typ = if let Some(expr) = maybe_expr {
expr.typ(ctx)?
} else {
Type::Unit
};
if let Some(typ) = &return_typ {
if expr_typ != *typ {
return Err(TypeError::builder()
.context(ctx)
.kind(TypeErrorKind::ReturnStatementsMismatch)
.build());
}
} else {
return_typ = Some(expr_typ.clone());
}
}
Statement::CallStatement(call) => {
call.typ(ctx)?;
}
Statement::UseStatement(_path) => {
// TODO: import the signatures (and types)
}
Statement::IfStatement(cond, block) => {
if cond.typ(ctx)? != Type::Bool {
return Err(TypeError::builder()
.context(ctx)
.kind(TypeErrorKind::ConditionIsNotBool)
.build());
}
block.typ(ctx)?;
}
Statement::WhileStatement(cond, block) => {
if cond.typ(ctx)? != Type::Bool {
return Err(TypeError::builder()
.context(ctx)
.kind(TypeErrorKind::ConditionIsNotBool)
.build());
}
block.typ(ctx)?;
}
}
}
// Check if there is an expression at the end of the block.
if let Some(expr) = &mut self.value {
self.typ = expr.typ(ctx)?.clone();
Ok(self.typ.clone())
} else {
self.typ = Type::Unit;
Ok(Type::Unit)
}
// TODO/FIXME: find a way to return `return_typ` so that the
// top-level block (the function) can check if this return type
// (and eventually those from other block) matches the type of
// the function.
}
}
impl TypeCheck for Call {
fn typ(&mut self, ctx: &mut TypingContext) -> Result<Type, TypeError> {
match &mut *self.callee {
Expr::Identifier { name, typ } => {
let signature = match ctx.functions.get(name) {
Some(sgn) => sgn.clone(),
None => {
return Err(TypeError::builder()
.context(ctx)
.kind(TypeErrorKind::UnknownFunctionCalled(name.clone()))
.build())
}
};
*typ = signature.clone().into();
let Signature(params_types, func_type) = signature;
self.typ = func_type.clone();
// Collect arg types.
let mut args_types: Vec<Type> = vec![];
for arg in &mut self.args {
let arg_typ = arg.typ(ctx)?;
args_types.push(arg_typ.clone());
}
if args_types == *params_types {
Ok(self.typ.clone())
} else {
Err(TypeError::builder()
.context(ctx)
.kind(TypeErrorKind::WrongFunctionArguments)
.build())
}
}
_ => unimplemented!("cannot call on expression other than identifier"),
}
}
}
impl TypeCheck for Expr {
fn typ(&mut self, ctx: &mut TypingContext) -> Result<Type, TypeError> {
match self {
Expr::Identifier { name, typ } => {
if let Some(ty) = ctx.variables.get(name) {
*typ = ty.clone();
Ok(typ.clone())
} else {
Err(TypeError::builder()
.context(ctx)
.kind(TypeErrorKind::UnknownIdentifier {
identifier: name.clone(),
})
.build())
}
}
Expr::BooleanLiteral(_) => Ok(Type::Bool),
Expr::IntegerLiteral(_) => Ok(Type::Int),
Expr::FloatLiteral(_) => Ok(Type::Float),
Expr::UnaryExpression { op, inner } => {
let inner_type = &inner.typ(ctx)?;
match (&op, inner_type) {
(UnaryOperator::Not, Type::Bool) => Ok(Type::Bool),
_ => Err(TypeError::builder()
.context(ctx)
.kind(TypeErrorKind::InvalidUnaryOperator {
operator: *op,
inner: inner_type.clone(),
})
.build()),
}
}
Expr::BinaryExpression { lhs, op, rhs, typ } => {
let ty = match op {
BinaryOperator::Add
| BinaryOperator::Sub
| BinaryOperator::Mul
| BinaryOperator::Div
| BinaryOperator::And
| BinaryOperator::Or => {
let left_type = &lhs.typ(ctx)?;
let right_type = &rhs.typ(ctx)?;
match (left_type, right_type) {
(Type::Int, Type::Int) => Ok(Type::Int),
(Type::Float, Type::Float) => Ok(Type::Float),
(Type::Bool, Type::Bool) => Ok(Type::Bool),
(_, _) => Err(TypeError::builder()
.context(ctx)
.kind(TypeErrorKind::InvalidBinaryOperator {
operator: op.clone(),
lht: left_type.clone(),
rht: right_type.clone(),
})
.build()),
}
}
BinaryOperator::Equal | BinaryOperator::NotEqual => {
let lhs_type = lhs.typ(ctx)?;
let rhs_type = rhs.typ(ctx)?;
if lhs_type != rhs_type {
return Err(TypeError::builder()
.context(ctx)
.kind(TypeErrorKind::InvalidBinaryOperator {
operator: op.clone(),
lht: lhs_type.clone(),
rht: rhs_type.clone(),
})
.build());
}
Ok(Type::Bool)
}
BinaryOperator::Modulo => {
let lhs_type = lhs.typ(ctx)?;
let rhs_type = lhs.typ(ctx)?;
match (&lhs_type, &rhs_type) {
(Type::Int, Type::Int) => Ok(Type::Int),
_ => Err(TypeError::builder()
.context(ctx)
.kind(TypeErrorKind::InvalidBinaryOperator {
operator: op.clone(),
lht: lhs_type.clone(),
rht: rhs_type.clone(),
})
.build()),
}
}
};
*typ = ty?;
Ok(typ.clone())
}
Expr::StringLiteral(_) => Ok(Type::Str),
Expr::UnitLiteral => Ok(Type::Unit),
Expr::Call(call) => call.typ(ctx),
Expr::Block(block) => block.typ(ctx),
Expr::IfExpr {
cond,
then_body,
else_body,
typ,
} => {
if cond.typ(ctx)? != Type::Bool {
Err(TypeError::builder()
.context(ctx)
.kind(TypeErrorKind::ConditionIsNotBool)
.build())
} else {
let then_body_type = then_body.typ(ctx)?;
let else_type = else_body.typ(ctx)?;
if then_body_type != else_type {
Err(TypeError::builder()
.context(ctx)
.kind(TypeErrorKind::IfElseMismatch)
.build())
} else {
// XXX: opt: return ref to avoid cloning
*typ = then_body_type.clone();
Ok(then_body_type)
}
}
}
}
}
}